List of Publications

60.) “Structural investigation of sulfobetaines and phospholipid monolayers at the air–water interface”, Elstone, N.*; Arnold, T.; Skoda, M. W. A.; Lewis, S. E.; Li, P.; Hazell, G.; Edler, K. J.*, Phys. Chem. Chem. Phys., 2022, 24, 22679, doi:10.1039/d2cp02695c

59.) “Azulene-based fluorescent chemosensor for adenosine diphosphate”, López-Alled, C. M.; Park, S. J.; Lee, D. J.; Murfin, L. C.; Kociok-Köhn, G.; Hann, J. L.; Wenk, J.*; James, T. D.*; Kim, H. M.*; Lewis, S. E.*, Chem. Commun., 2021, 57, 10608, doi:10.1039/d1cc04122c

58.) “Palladium-catalyzed stereoselective domino arylation–acylation: an entry to chiral tetrahydrofluorenone scaffolds”, Dunås, P.; Paterson, A. J.; Kociok-Köhn, G.; Rahm, M.; Lewis, S. E.*; Kann, N.*, Chem. Commun., 2021, 57, 6518, doi:10.1039/d1cc02160e

57.) “Azulene – A bright core for sensing and imaging”, Murfin, L. C.*; Lewis, S. E., Molecules, 2021, 26, 353, doi:10.3390/molecules26020353

56.) “C4-aldehyde of guaiazulene: synthesis and derivatisation”, Williams, G. E.; Kociok-Köhn, G.; James, T. D.; Lewis, S. E.*, Org. Biomol. Chem., 2021, 19, 2502, doi:10.1039/d0ob02567d

55.) “Fluorescent small organic probes for biosensing”, Tian, X.; Murfin, L. C.; Wu, L.*; Lewis, S. E.*; James, T. D.*, Chem. Sci., 2021, 12, 3406, doi:10.1039/D0SC06928K

54.) “Colorimetric detection of Hg2+ with an azulene-containing chemodosimeter via dithioacetal hydrolysis”, López-Alled, C. M.; Murfin, L. C.; Kociok-Köhn, G.; James, T. D.*; Wenk, J.*; Lewis, S. E.*, Analyst, 2020, 145, 6262, doi:10.1039/d0an01404d

53.) “Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles”, López-Alled, C. M.; Martin, F. J. O.; Chen, K.-Y.; Kociok-Köhn, G.; James, T. D.; Wenk, J.; Lewis, S. E.*, Tetrahedron, 2020, 76, 131700, doi:10.1016/j.tet.2020.131700

52.) “Azulene functionalization by iron-mediated addition to a cyclohexadiene scaffold”, Dunås, P.; Murfin, L. C.; Nilsson, O. J.; Jame, N.; Lewis, S. E.*; Kann, N.*, J. Org. Chem., 2020, 85, 13453, doi:10.1021/acs.joc.0c01412

51.) “Palladium catalyzed stereoselective arylation of biocatalytically derived cyclic 1,3-dienes: Chirality transfer via a Heck-type mechanism”, Paterson, A. J.; Dunås, P.; Rahm, M.; Norrby, P.-O.; Kociok-Köhn, G.; Lewis, S. E.*; Kann, N.*, Org. Lett., 2020, 22, 2464, doi:10.1021/acs.orglett.0c00708

50.) “(Fluoro)quinolones and quinolone resistance genes in the aquatic environment: A river catchment perspective”, Castrignanò, E.; Kannan, A. M.; Proctor, K.; Petrie, B.; Hodgen, S.; Feil, E. J.; Lewis, S. E.; Lopardo, L.; Camacho-Muñoz, D.; Rice, J.; Cartwright, N.; Barden, R.; Kasprzyk-Hordern, B.*, Water Research, 2020, 182, 116015, doi:10.1016/j.watres.2020.116015

49.) “A Colorimetric chemosensor based on a Nozoe azulene that detects fluoride in aqueous/alcoholic media”, Murfin, L. C.; Chiang, K. X. C.; Lyall, C. L.; Williams, G. T.; Wenk, H.*; Jenkins, T.*; James, T. D.*; Lewis, S. E.*, Frontiers in Chemistry, 2020, doi: 10.3389/fchem.2020.00010

48.) “A simple, azulene-based colorimetric probe for the detection of nitrite in water”, Murfin, L. C.; López-Alled, C. M.; Sedgwick, A. C.; Wenk, J.*; James, T. D.*; Lewis, S. E.*, Frontiers of Chemical Science and Engineering, 2020, doi:10.1007/s11705-019-1790-7

47.) “Sidechain Diversification of Grandifloracin Allows Identification of Analogues with Enhanced Anti‐Austerity Activity against Human PANC‐1 Pancreatic Cancer Cells”, Alexander, B. E.; Sun, S.; Palframan, M. J.; Kociok‐Köhn, G.; Dibwe, D. F.; Watanabe, S.; Caggiano, L.*; Awale, S.*; Lewis, S. E.*, ChemMedChem, 2020, 15, 125, doi:10.1002/cmdc.201900549

46.) “Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy”, Murfin, L. C.; Weber, M.; Park, S. J.; Kim, W. T.; Lopez-Alled, C. M.; McMullin, C. L.; Pradaux-Caggiano, F.; Lyall, C. L.; Kociok-Köhn, G.; Wenk, J. H.; Bull, S. D.; Yoon, J.; Kim, H. M.*; James, T. D.*; Lewis, S. E.*, J. Am. Chem. Soc. 2019, 141, 19389-19396. doi: 10.1021/jacs.9b09813

45.) “Selective Iron-Mediated C- and O-Addition of Phenolic Nucleophiles to a Cyclohexadiene Scaffold Using Renewable Precursors”, Dunås, P.;  Paterson, A. J.; Kociok-Köhn, G.; Lewis, S. E.*; Kann, N.*, 2019, 7, 7155-7162.  doi:10.1021/acssuschemeng.9b00127

44.) “Partial Cation Substitution Reduces Iodide Ion Transport in Lead Iodide Perovskite Solar Cells”, Ferdani, D.; Pering, S.; Ghosh, D.; Kubiak, P.; Walker, A.; Lewis, S. E.; Johnson, A. L.; Baker, P. J.; Islam, M. S.; Cameron, P. J., Energy & Environmental Science, 2019, 12, 2264-2272. doi: 10.1039/c9ee00476a

43.) “Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties”, Webster, S. J.; López-Alled, C. M.; Liang, X.; McMullin, C. L.; Kociok-Köhn, G.; Lyall, C. L.; James, T. D.; Wenk, J.; Cameron, P. J.; Lewis, S. E.*, New Journal of Chemistry, 2019, 43, 992-1000.  doi:10.1039/C8NJ05520C

42.) “Azulene–Thiophene–Cyanoacrylic acid dyes with donor-π-acceptor structures. Synthesis, characterisation and evaluation in dye-sensitized solar cells”, Cowper, P*; Pockett, A.; Kociok-Köhn, G.; Cameron, P. J.; Lewis, S. E*, Tetrahedron, 2018, 74, 2775–2786.   doi:10.1016/j.tet.2018.04.043

41.) “Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent”, Sanchez-Fernandez, A.; Moody, G. L.; Murfin, L. C.; Arnold,T.; Jackson, A. J.; King, S. M.; Lewis, S. E.; Edler, K. J., Soft Matter, 2018, 14, 5525-5536.   doi:10.1039/c8sm00755a

40.) “Enantioselective transformation of fluoxetine in water and its ecotoxicological relevance”, Andrés-Costa, M. J.; Proctor, K.; Sabatini, M. T.; Gee, A. P.; Lewis, S. E.; Pico, Y.; Kasprzyk-Hordern, B., Sci. Rep., 2017, 7, 15777.   doi:10.1038/s41598-017-15585-1

39.) “Azetidinium lead iodide for perovskite solar cells”, Pering, S. R.; Deng, W.; Troughton, J. R.; Kubiak, P. S.; Ghosh, D.; Niemann, R. G.; Brivio, F.; Jeffrey, F. E.; Walker, A. B.; Islam, M. S.; Watson, T. M.; Raithby, P. R.; Johnson, A. L.; Lewis, S. E.; Cameron; P. J.*, J. Mater. Chem. A, 2017,5, 20658-20665.  doi:10.1039/C7TA07545F

38.) “Biocatalytic dearomatisation of para-fluorobenzoic acid – Access to versatile homochiral building blocks with quaternary centres”, Nash, T. J.; Wharry, S.; Moody, T. S.*; Lewis, S. E.*, Chimica Oggi, 2017, 35, 90–94.

37.) “Azulene–boronate esters: colorimetric indicators for fluoride in drinking water”, López-Alled, C. M.; Sanchez-Fernandez, A.; Edler, K. J.; Sedgwick, A. C.; Bull, S. D.; McMullin, C. L.; Kociok-Köhn, G.; James, T. D.*; Wenk, J.*; Lewis, S. E.*, Chem. Commun., 2017, 53, 12580­–12583.   doi:10.1039/c7cc07416f

36.) “Phosphorus-substituted azulenes accessed via direct Hafner reaction of a phosphino cyclopentadienide”, Gee, A. P.; Cosham, S. D.; Johnson, A. L.; Lewis, S. E.* Synlett, 2017, 973–975.  doi:10.1055/s-0036-1589936

35.) “What difference does a thiophene make? Evaluation of a 4,4’-bis(thiophene) functionalised 2,2’-bipyridyl copper(I) complex in a dye-sensitized solar cell”, Wills, K. A.; Mandujano-Ramírez, H. A.; Merino, G.; Oskam, G.; Cowper, P.; Jones, M. D.*; Cameron, P. J.*; Lewis, S. E.*  Dyes and Pigments, 2016, 134, 419-426.  doi:10.1016/j.dyepig.2016.07.023

34.) “Asymmetric Dearomatization Under Enzymatic Conditions”, Lewis, S. E. in Asymmetric Dearomatization Reactions (You, S.-L. ed.) Wiley-VCH, 2016, pp 279–346.  doi:10.1002/9783527698479.ch12

33.) “Langmuir monolayers composed of single and double tail sulfobetaine lipids”, Hazell, G.; Gee, A. P.; Arnold, T.; Edler, K.*; Lewis, S. E.  J. Colloid Interface Sci., 2016, 474, 190-198.  doi:10.1016/j.jcis.2016.04.020

32.) “Azulenesulfonium Salts: Accessible, Stable and Versatile Reagents for Cross-Coupling”, Cowper, P.*; Jin, Y.; Turton, M. D.; Kociok-Köhn, G.; Lewis, S. E.* Angew. Chem. Int. Edn., 2016, 55, 2564–2568.  doi:10.1002/anie.201510666

31.) “Biotransformations of Arenes: An Overview”, Lewis, S. E. in Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (Mortier, J. ed.) Wiley-VCH, 2015, pp 915–937.  doi:10.1002/9781118754887.ch32

30.) “Tricarbonyliron(0) complexes of bio-derived η4 cyclohexadiene ligands: An approach to analogues of oseltamivir”, ten Broeke, M.; Ali Khan, M.; Kociok-Köhn, G.; Kann, N.; Lewis, S. E.*  J. Organomet. Chem., 2015, 799-800, 19–29.  doi:10.1016/j.jorganchem.2015.09.005

29.) “Cycloparaphenylenes and related nanohoops”, Lewis, S. E.* Chem. Soc. Rev., 2015, 44, 2221–2304.  doi:10.1039/c4cs00366g

28.) “Direct core functionalisation of naphthalenediimides by iridium catalysed C–H borylation”, Lyall, C. L.; Shotton, C. C.; Pérez-Salvia, M.; Pantoş, G. D.*; Lewis, S. E.* Chem. Commun., 2014, 50, 13837–13840,  doi:10.1039/c4cc06522k

27.) “C–H functionalization of sp3 centers with aluminum: a computational and mechanistic study of the Baddeley reaction of decalin”, Lyall,C. L.; Sato, M.; Uosis-Martin, M.; Asghar, S. F.; Jones, M. D.; Williams, I. H.*; Lewis, S. E.* J. Am. Chem. Soc., 2014, 136, 13745–13753,  doi:10.1021/ja5062246

26.) “A new assay for rhamnolipid detection—important virulence factors of Pseudomonas aeruginosa”, Laabei, M.; Jamieson, W. D.; Lewis, S. E.; Diggle, S. P.; Jenkins, A. T. A.*  Appl. Microbiol. Biotech., 2014, 98, 7199–7209,   doi:10.1007/s00253-014-5904-3  

25.) “The Enone Motif of (+)-Grandifloracin is Not Essential for “Anti-Austerity” Antiproliferative Activity”, Ali Khan, M.; Wood, Pauline J.; Lamb-Guhren, N. M.; Caggiano, L.; Kociok-Köhn, G.; Tosh, D.; Lewis, S. E.* Bioorg. Med. Chem. Lett., 2014, 24, 2815–2819   doi: 10.1016/j.bmcl.2014.04.111

24.) “Applications of biocatalytic arene ipso,orthocis-dihydroxylation in synthesis”, Lewis, S. E.*  Chem. Commun., 2014, 50, 2821–2830  doi:10.1039/c3cc49694e

23.) “Benzoate dioxygenase from Ralstonia eutropha B9 – unusual regiochemistry of dihydroxylation permits rapid access to novel chirons”, Griffen, J. A.; Kenwright, S. J.; Abou-Shehada, S.; Wharry, S.; Moody, T. S.*; Lewis, S. E.*  Org. Chem. Front., 2014, 1, 79–90  doi:10.1039/c3qo00057e

22.) “Investigation of a copper(I) biquinoline complex for application in dye-sensitized solar cells”, Wills, K. A.; Mandujano-Ramírez, H. J.; Merino, G.; Mattia, D.; Hewat, T.; Robertson, N.; Oskam, G.; Jones, M. D.; Lewis, S. E.; Cameron, P. J. RSC Advances, 2013, 3, 23361–23369 doi:10.1039/c3ra44936j

 21.) “A Model System for the Synthesis of Complanadine Alkaloids by ‘Diverted Kondrat’eva’ Oxazole–Olefin Cycloaddition”, Uosis-Martin, M.; Pantos, G. D.; Mahon, M. F.; Lewis, S. E.* J. Org. Chem., 2013, 78, 6253–6263   doi:10.1021/jo401014n

20.) “New Aminocyclitols with Quaternary Stereocentres via Acylnitroso Cycloaddition with an ipso,ortho-Arene Dihydrodiol”, Griffen, J. A.; White, J. C.; Kociok-Köhn, G.; Lloyd, M. D.; Wells, A.; Arnot, T. C.; Lewis, S. E.* Tetrahedron, 2013, 69, 5989–5997.  doi:10.1016/j.tet.2013.04.033

19.) “Aliphatic C–H Activation with Aluminium Trichloride–Acetyl Chloride: Expanding the Scope of the Baddeley Reaction for the Functionalisation of Saturated Hydrocarbons”, Lyall, C. L.; Uosis-Martin, M.; Lowe, J. P.; Mahon, M. F.; Pantoş, G. D.; Lewis, S. E.* Org. Biomol. Chem., 2013, 11, 1468–1475, doi:10.1039/c2ob26765a

18.) “Valuable New Cyclohexadiene Building Blocks via Cationic η5 Iron Carbonyl Complexes Derived from a Microbial Arene Oxidation Product”, Ali Khan, M.; Mahon, M. F.; Lowe, J. P.; Stewart, A. J. W.; Lewis, S. E.* Chem. Eur. J., 2012, 18, 13480–13493, doi:10.1002/chem.201202411p

17.) “Photooxygenation of a Microbial Arene Oxidation Product and Regioselective Kornblum–DeLaMare Rearrangement. Total Synthesis of Zeylenols and Zeylenones”, Palframan, M. J.; Kociok-Köhn, G.; Lewis, S. E.* Chem. Eur. J., 2012, 18, 4766–4774, doi:10.1002/chem.201104035

16.) “TRPA1 Mediates Spinal Antinociception Induced by Acetaminophen and the Cannabinoid Δ9Tetrahydrocannabiorcol”, Andersson, D. A.; Gentry, C.; Alenmyr, L.; Killander, D.; Lewis, S. E.; Andersson, A.; Bucher, B.; Galzi, J.-L.; Sterner, O.; Bevan, S.; Högestätt, E. D.; Zygmunt, P. M. Nature Commun., 2011, 2, 551, doi:10.1038/ncomms1559

15.) “A Cobalt Complex of a Microbial Arene Oxidation Product”, van der Waals, D.; Pugh, T.; Ali Khan, M.; Stewart, A. J. W.; Johnson, A. L.; Lewis, S. E.*  Chem. Central J., 2011, 5, 80, doi:10.1186/1752-153X-5-80

  14.) “Concise Synthesis of 1,4a-Bifunctionalised Decalin Building Blocks by C–H Activation of Decalin”, Uosis-Martin, M.; Mahon, M. F.; Yevglevskis, M.; Lewis, S. E.* Synlett, 2011, 2211–2213, doi: 10.1055/s-0030-1261184

13.) “Synthetic methods Part (II): oxidation and reduction methods”, Asghar, S. F.; Lewis, S. E.* Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 2011, 107, 34–67, doi:10.1039/c1oc90012a

12.) “Total Synthesis of (+)-Grandifloracin by Iron Complexation of a Microbial Arene Oxidation Product”, Palframan, M. J.; Kociok-Köhn, G.; Lewis, S. E.* Org. Lett., 2011, 13, 3150–3153, doi:10.1021/ol201057r

11.) “Expanding the chiral pool: oxidation of meta-bromobenzoic acid by R. eutrophus B9 allows access to new reaction manifolds”, Griffen, J. A.; Le Coz, A. M.; Kociok-Köhn, G.; Ali Khan, M.; Stewart, A. J. W; Lewis, S. E.* Org. Biomol. Chem., 2011, 9, 3920–3928, doi:10.1039/c1ob05131h

10.) “Inosaminoacids: novel inositol–amino acid hybrid structures accessed by microbial arene oxidation”, Pilgrim, S.; Kociok-Köhn, G.; Lloyd, M. D.; Lewis, S. E.* Chem. Commun., 2011, 47, 4799–4801  doi:10/1039/c1cc10643k

 9.) “Accessing the antipodal series in microbial arene oxidation: a novel diene rearrangement induced by tricarbonyliron(0) complexation“, Ali Khan, M.; Lowe, J. P.; Johnson, A. L.; Stewart, A. J. W.; Lewis, S. E.* Chem. Commun., 2011, 47, 215–217 doi:10.1039/c0cc01169j

8.) “Iron(0)tricarbonyl Complexes of Microbially-Derived Cyclohexadiene Ligands Containing Quaternary Stereocenters”, Ali Khan, M.; Mahon, M. F.; Stewart, A. J. W.; Lewis, S. E.* Organometallics, 2010, 29, 199–204.   doi:10.1021/om9009069

 7.) “Transannular decarboxylative Claisen rearrangement reactions for the synthesis of sulfur-substituted vinylcyclopropanes”, Craig, D.*; Gore, S. J.; Lansdell, M. I.; Lewis, S. E.; Mayweg, A. V. M.; White, A. J. P. Chem. Commun., 2010, 46, 4991–4993.  


6.) “Synthesis and Characterisation of Novel Alkane-α,ω-diyl bis(silyl triflates)”, Baker, T.; Lewis, S. E.* Synth. Commun.,2010, 40, 2747–2752.    doi:10.1080/00397910903318724

5.) “Crystallographic rationalization of the reactivity and spectroscopic properties of (2R)-S-(2,5-dihydroxyphenyl)cysteine”, Kociok-Köhn, G.; Lewis, S. E.* Acta Cryst.,2010, C66, o187–o189.   doi:10.1107/S0108270110005780

 4.) “Synthetic methods: Part (ii) Oxidation and reduction methods”, Lewis, S. E.* Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 2010, 106, 34–75.   doi:10.1039/b927087f

3.) “Synthetic methods: Part (ii) Oxidation and reduction methods”, Lewis, S. E.* Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 2009, 105, 35–74.   doi:10.1039/b822050f

 2.) Decarboxylative Claisen rearrangements of diallyl 2-sulfonylmalonates: remarkable regioselectivity in the reaction of bifunctional substrates”, Craig, D.*; Lansdell, M.; Lewis, S. E. Tetrahedron Lett.,2007, 48, 7861–7864.  doi:10.1016/j.tetlet.2007.08.130 

 1.)Recent advances in the chemistry of macroline, sarpagine and ajmaline-related indole alkaloids”, Lewis, S. E.* Tetrahedron, 2006, 62, 8655–8681.  doi:10.1016/j.tet.2006.06.017